

Coal's Role in the Cement Industry

Christian Dueweke LafargeHolcim

The Coal Institute Summer Trade Seminar July 17, 2017

- **1. About LafargeHolcim**
- 2. Insight into the Cement Markets then, now & future
- **3.** Overview of the Cement Manufacturing Process
- **4.** Fueling Cement Kilns Finding the right Mix
- **5.** Synergies in the Cement & Coal Industries

LafargeHolcim Global Overview

LafargeHolcim global presence (highlighted in Blue) as of 12/31/2016. Figures reflect the number of employees in each region.

U.S. at a Glance

Largest cement producer in the US market

Strengths

- #1 cement producer with 6Mt available capacity
- Unrivalled distribution network to provide uninterrupted supply to all key markets, including 2Mt additional free capacity from Canada
- A unique range of product offer

	LTM
Cement net sales (CHF bn)	2.2
Cement capacity (Mt)	20
FTE # (2016)	2,800

Source: PCA U.S. Portland Cement Industry: Plant Information Summary

LafargeHolcim Position in the U.S.

DANK	COMPANY	CLINKER	PERCENT OF
NAINK	COMPANY	CAPACITY**	INDUSTRY
1	LafargeHolcim	18,884	19.0%
2	CEMEX	14,580	14.7%
3	Lehigh Hanson, Inc.	9,136	9.2%
4	Buzzi Unicem, Inc.	8,108	8.2%
5	Ash Grove Cement Company	7,123	7.2%
6	CalPortland Company	5,217	5.3%
7	Essroc Cement Corp.	4,195	4.2%
8	Martin Marietta Materials, Inc.	3,971	4.0%
9	Argos USA Corporation	3,521	3.5%
10	Eagle Materials	3,441	3.5%
11	Titan America	2,955	3.0%
12	Giant Cement Holding	2,554	2.6%
13	Continental Cement Co., Inc.	1,904	1.9%
14	GCC of America Inc	1,875	1.9%
15	St. Marys Cement Inc (U.S.)/VCNA	1,870	1.9%
16	Mitsubishi Cement Corporation	1,498	1.5%
17	Texas-Lehigh Cement Company	1,118	1.1%
18	National Cement Co. Of California	1,033	1.0%
19	Monarch Cement Company	988	1.0%
20	American Cement Company	917	0.9%
21	Salt River Materials Group-Phoenix Cement	912	0.9%
22	National Cement Co. of Alabama	899	0.9%
23	Suw annee American Cement	814	0.8%
24	Capitol Aggregates, Ltd.	701	0.7%
25	Drake Cement	599	0.6%
26	Oldcastle Materials	280	0.3%
27	Armstrong Cement & Supply Corp.	264	0.3%
	TOTAL CAPACITY	99,357	-

LafargeHolcim

LafargeHolcim

US Cement 2009 PCA Future Forecast

US Cement 2009 PCA Future Forecast vs. Actual

MAJOR CEMENT SECTORS	2006	2009	Delta
Residential Buildings	40,851	16,786	-59%
Nonresidential Buildings	26,336	11,352	-57%
Oil/Gas Well & Other	8,596	8,995	5%
Public Construction	46,065	31,554	-32%
Total	121,848	68,687	-44%

2009	2015	Delta
16,786	24,709	47%
11,352	14,010	23%
8,995	11,048	23%
31,554	39,965	27%
68,687	89,732	31%

LafargeHolcim

US Cement Production Stat	S
----------------------------------	---

· · ·	Clinker	Clinker	Utilization	
Year	Production	Capacity*	Rate	
	(MMT)	(MMT)	(%)	
1995	70.0	76.3	91.7	
1996	70.4	76.0	92.6	
1997	72.7	76.7	94.8	Capacity Utilization Rate
1998	75.9	77.9	97.4	(Percent)
1999	77.3	80.2	96.4	120
2000	79.6	84.1	94.7	
2001	79.9	89.2	89.5	
2002	83.0	91.5	90.8	80
2003	83.2	92.1	90.4	
2004	88.0	93.8	93.8	60 60 60 60 60 60 60 60 60 60 60 60 60 6
2005	88.7	94.1	94.3	
2006	89.9	94.7	95.0	
2007	87.5	95.6	91.6	20
2008	79.6	97.5	81.6	
2009	56.9	100.9	56.4	
2010	60.4	103.6	58.3	1995 1999 2003 2007 2011
2011	62.0	102.2	60.6	
2012	67.8	103.3	65.6	L
2013	69.9	99.9	70.0	
2014	75.0	99.4	75.5	
2015	76.6	99.4**	77.1	

- 2006 @ 95% utilization rates at domestic plants
- 2009 @ 56% utilization rates at domestic plants
- 2015 Still only at roughly 77% utilization

2015

Cement Manufacturing Process / 4 Main Steps

Step 1 – Raw Materials Selection & Crushing

Step 2 – Raw Materials Milling & Blending

Step 3 – Preheater Tower

Hot gases from preheater or clinker cooler to raw mill

- 3. Burning changes raw mix chemically into cement clinker. Note four-stage preheater, flash furnaces, and shorter kiln.
 - Raw Meal falls through series of cyclones
 - Hot gases from kiln & cooler used to heat Raw Meal
 - Raw Meal heated to approximately 700 900 degrees

Step 3 Cont. – Precalciner & Kiln

Step 4 – Cooling, Pulverizing and Gypsum addition

4. Clinker with gypsum, and limestone and/or inorganic processing additions are ground into portland cement and shipped.

- Raw Meal is cooled rapidly in final stage, forming Clinker
- Clinker is pulverized in Ball Mills to fine powder
- Gypsum added to regulate setting time

Source: PCA "2015 Labor-Energy Input Survey"

US Cement Industry Fuel Blend

Source: PCA "2016 Labor Energy Report"

US Cement Industry Energy Efficiency

21

Source: EIA "Annual Energy Outlook 2016" Published May 2016

Cement Industry Future Fuel Trends

- Distressed or Refuse Coal
- Fly Ash & Bottom ash as Raw Material
- Synthetic Gypsum
- Limestone
- Iron Byproducts

- Distressed or Refuse Coal
 - Contaminated or co-mingled coal piles
 - Retired plant coal pile
 - Reclaiming Pad Coal
 - High Ash coal
 - Train wreck coal
- Fly Ash & Bottom ash as Raw Material
- Synthetic Gypsum
- Limestone

24

Distressed or Refuse Coal

- Fly Ash & Bottom Ash as Raw Material
 - Provides Alumina, Silica & iron in cement process
 - Utilize concrete grade ash (class F & C)
- Synthetic Gypsum
- Limestone
- Iron Byproducts

- Distressed or Refuse Coal
- Fly Ash & Bottom Ash as Raw Material
- Synthetic Gypsum
 - Utilize at the end of our process vs. Natural Gypsum
 - Rateable off-take
- Limestone
- Iron Byproducts

- Distressed or Refuse Coal
- Fly Ash & Bottom Ash as Raw Material
- Synthetic Gypsum
- Limestone
 - Expertise in operate quarries on each cement site
 - Potential backhaul with other byproducts
- Iron Byproducts

- Distressed or Refuse Coal
- Fly Ash & Bottom Ash as Raw Material
- Synthetic Gypsum
- Limestone
- Iron Byproducts
 - Low bearing Fe Materials

Cement Industry Factors for Success & Conclusion

- **1.** Maximize Output of High efficiency plants
- 2. Partner with Suppliers of Raw materials and Fuels
- **3.** Diversify and Utilize Low cost fuels streams

Disclaimer & Copyright

Disclaimer: This report is presented for informational purposes only. It is not intended to be a comprehensive or detailed statement or report on any subject and no representations or warranties, express or implied, are made as to its accuracy, timeliness or completeness. Nothing in this report is intended to provide financial, legal, accounting or tax advise nor should it be relied upon. Neither LafargeHolcim nor the author is liable whatsoever for any loss or damage caused by, or resulting from, any use of or any inaccuracies, errors or omissions in the information provided.

All Rights Reserved: This presentation is protected by US and International Copyright laws. No part of this publication (text, figures, or graphics) may be reproduced, stored, or transmitted whatsoever (electronically, mechanically, recorded, or otherwise) without prior consent in writing from LafargeHolcim legal representatives.

LafargeHolcim